Câu 3/ cho A(1;1), đường thẳng Δ : x+y+2=0 và đường tròn (c) có pt : x2 + y2 - 4x - 2y = 0
a/ Qua điểm M thuộc Δ kẻ các tiếp tuyến MA và MB đến (c) (A,B là các tiếp điểm). Tìm tọa độ M, biết tứ giác MAIB có diện tích bằng 10
Trong mặt phẳng Oxy, cho đường tròn (C): x2+y2-2x-2y-14=0 và điểm A(2;0). Gọi I là tâm của (C). Viết pt đường thẳng đi qua A và cắt (C) tại hai điểm M, N sao cho tam giác IMN có diện tích lớn nhất.
a) viết phương trình đường tròn (C) có tâm I(2,3) đi qua điểm A(5,7) b) viết phương trình tiếp tuyến của đường tròn (C) : (x-1)^2 + ( y+5)^2 =4 . Biết tiếp tuyến song song với đường thẳng (d) 3x + 4y - 1 =0
Trong mặt phẳng Oxy cho đường tròn (T) có phương trình :
\(x^2+y^2-4x-2y+3=0\)
a) Tìm tọa độ tâm và tính bán kính của đường tròn (T)
b) Tìm m để đường thẳng \(y=x+m\) có điểm chung với đường tròn (T)
c) Viết phương trình tiếp tuyến \(\Delta\) với đường tròn (T) biết rằng \(\Delta\) vuông góc với đường thẳng d có phương trình \(x-y+2006=0\)
Trong mặt phẳng toạ độ Oxy cho tam giác ABC nội tiếp đường tròn tâm I và D là chân đường phân giác trong đỉnh A của tam giác ABC biết toạ độ các đieemr A(2;6) I(-1/2;1) D(2;-3/2) biết phương trình tổng quát của đường thẳng BC
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):x^2+y^2+10x=0\)
\(\left(C_2\right):x^2+y^2-4x-2y-20=0\)
có tâm lần lượt là I, J
a) Viết phương trình đường tròn (C) đi qua các giao điểm của \(\left(C_1\right),\left(C_2\right)\) và có tâm nằm trên đường thẳng \(d:x-6y+6=0\)
b) Viết phương trình tiếp tuyến chung của \(\left(C_1\right),\left(C_2\right)\). Gọi \(T_1,T_2\) lần lượt là tiếp điểm của \(\left(C_1\right),\left(C_2\right)\) với một tiếp tuyến chung, hãy viết phương trình đường thẳng \(\Delta\) qua trung điểm của \(T_1T_2\) và vuông góc với IJ
Từ điêm A nằm ngoài đường tròn (O) tã vẽ tiếp tuyến AB và cắt tuyến ACD với đường tròn sao cho tia AO nằm giữa AB và AD (B:tiếp điểm;C nằm giữa A và D).Gọi M là trung điểm của CD. a) cm AB^2=AC×AD b) cm tứ giác ABOM nt đường tròn (I) . ĐỊNH TÂM I c) đường tròn I cắt đường tròn O tại E. Cm AE là tiếp tuyến của đường tròn
Cho tam giác ABC có tọa độ các điểm A(1;1),B(2;3),C(4;0)
a, viết phương trình tổng quát của đường thẳng BC
b, Viết phương trình đường tròn (C) có tâm là trọng tâm tam giác ABC và tiếp xúc với đường thẳng BC
Trong mặt phẳng Oxy, cho hình thoi OABC có tâm đối xứng là \(I\left(-1;1\right)\)và có cạnh bằng \(\sqrt{10}\)
a) Tìm tọa độ các đỉnh A, B, C và tính diện tích hình thoi, biết \(x_A>x_C\)
b) Tìm tọa độ điểm D (khác B) và giao điểm của đường thẳng OB với đường tròn ngoại tiếp tam giác ABC