a: \(d\left(O;d\right)=\dfrac{\left|\left(m-4\right)\cdot0+\left(m-3\right)\cdot0-1\right|}{\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}}=\dfrac{1}{\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}}\)
Để d lớn nhất thì \(A=\sqrt{\left(m-4\right)^2+\left(m-3\right)^2}_{MIN}\)
\(=\sqrt{2m^2-14m+25}\)
\(=\sqrt{2\left(m^2-7m+\dfrac{25}{2}\right)}\)
\(=\sqrt{2\left(m^2-7m+\dfrac{49}{4}+\dfrac{1}{4}\right)}\)
\(=\sqrt{2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}}>=\dfrac{1}{\sqrt{2}}\)
Dấu = xảy ra khi m=7/2