\(3B=3+3^2+3^3+...+3^{2019}\\ 2B=3^{2019}-1\\ B=\dfrac{3^{2019}-1}{2}\)
\(9B=3^2+3^4+...+3^{2020}\)
\(\Leftrightarrow8B=3^{2018}-1\)
\(\Leftrightarrow B=\dfrac{3^{2018}-1}{8}\)
B=1+32+34+...+32018
3B = 3 + 33 + 35 + .... + 32019
3B - B = ( 3 + 33 + 35 + .... + 32019 ) - ( 1+32+34+...+32018 )
2B = 3 + 32019 - 1
B = \(\dfrac{3+3^{2019}-1}{2}\)