B1: GPT
a,\(\left\{{}\begin{matrix}x^2+y^2-x+y=2\\xy+x-y=-1\end{matrix}\right.\) c,\(\left\{{}\begin{matrix}x^3=5x+y\\y^3=5y+x\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\) d,\(\left\{{}\begin{matrix}x^2+y^4=20\\x^4+y^2=20\end{matrix}\right.\)
Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
Giải hệ phương trình \(\left\{{}\begin{matrix}x^3-y^3-3x^2+4x-y-2=0\\\sqrt{x^2+x+7}+\sqrt{y^2+y+4}=x+y+4\end{matrix}\right.\)
tìm m để hệ phương trình sau có nghiệm:
a,\(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y-1}=m\\x+y=m^2-4m+6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x+\sqrt{y-1}=m\\2y+\sqrt{x-1}=m\end{matrix}\right.\)
Giải:
\(\left\{{}\begin{matrix}\left(3-\dfrac{5}{y+42x}\right)\sqrt{2y}=4\\\left(3+\dfrac{5}{y+42x}\right)\sqrt{x}=2\end{matrix}\right.\)
Giải hệ sau
\(\left\{{}\begin{matrix}\left(3-\dfrac{5}{y+42x}\right)\sqrt{2y}=4\\\left(3+\dfrac{5}{y+42x}\right)\sqrt{x}=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2=1\\x+y\sqrt{3}\le m\end{matrix}\right.\) với giá trị nào của m thì hệ có nghiệm
giải hệ pt
\(\left\{{}\begin{matrix}\frac{8xy}{x^2+6xy+y^2}+\frac{17}{8}\left(\frac{y}{x}+\frac{x}{y}\right)=\frac{21}{4}\\\sqrt{x-16}+\sqrt{y-9}=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{8xy}{x+y}=16\\\sqrt{x^2+12}+\dfrac{5}{2}\sqrt{x+y}=3x+\sqrt{x^2+5}\end{matrix}\right.\)