Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

B1: Cho đường tròn (O) dây cung BC cố định , D là điểm có định trên cung lớn BC A thuộc cung nhỏ BD. gọi E,F,G lần lượt là hình chiếu của D trên AB,AC,BC. Lấy điểm H sao cho \(\widehat{DHA}=\widehat{DCB}\).Biết tứ giác DFGC nội tiếp ; 3 điểm E,F,G thẳng hàng và \(\Delta HCD\) đồng dạng\(\Delta ABD\).Chứng minhh \(\dfrac{AB}{DE}+\dfrac{BC}{DG}=\dfrac{AC}{DF}\)

B2: Cho đường tròn (O;R) đường kính AB cố định . Trên tía đối của tia AB lấy C sao cho AC=R. Kẻ đường thẳng D vuông góc với BC tại C. Tại D vẽ dây cung È bất kì của đường tròn (O;R)(EF không là đường kính). Tia BE cắt d tại M , tia BF cắt d tại N . Biết MCAE là tứ giác nội tiếp ; BE.BM=BE.BN. Chứng minh rằng tâm I của đường tròn ngoại tiếp \(\Delta BMN\) luôn nằm trên một đường thẳng khi dây cung EF thay đổi.

B3: Cho đường tròn (O). Đường thẳng d không đi qua tâm (O) cắt đường tròn tại 2 điểm A và B, C là điểm thuộc d ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D (P thuộc cung lớn AB). Tia CP cắt đường tròn (O) tại điểm thứ hai là I ,AB cắt IQ tại K. Biết tứ giác PDKI nội tiếp ; CI.CP=CK.CD ; IC là phân giác góc ngoài đỉnh I của tam giác AIB. Cho 3 điểm A,B,C cố định . Đường tròn (O) thay đổi những vẫn đi qua A và B . Chứng minh IQ luôn đi qua 1 điểm cố định


Các câu hỏi tương tự
007
Xem chi tiết
Kim Trường Giang
Xem chi tiết
Alex Mashy
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
đặng phước đạt
Xem chi tiết
Acacia
Xem chi tiết
Nhung Hoàng
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
công
Xem chi tiết