a) x2 + y2 + 4x - 10y + 29 = 0
<=> (x2 + 4x + 4) + (y2 - 10y + 25) = 0
<=> (x+2)2 + (y-5)2 = 0
Mà: (x+2)2 ≥ 0 với mọi x
(y-5)2 ≥ 0 với mọi y
=>\(\left\{{}\begin{matrix}\left(x+2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)(T/m)
Vậy x = -2 và y = 5.
b) C = 5x2 - 20x + 15
= 5(x2 - 4x + 3)
= 5(x2 - x - 3x + 3)
= 5[x(x-1) - 3(x-1)]
= 5(x-1)(x-3)
c) x2 + y2 + 2x - 6y + 10 = 0
<=> (x2 + 2x + 1) + (y2 - 6y + 9) = 0
<=> (x+1)2 + (y-3)2 = 0
Mà: (x+1)2 ≥ 0 với mọi x
(y-3)2 ≥ 0 với mọi y
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)(T/m)
Vậy x = -1 và y = 3
d) A = 3x2 - 12x + 15
= 3(x2 - 4x + 5)
= 3(x2 - 5x + x - 5)
= 3[x(x-5) + (x-5)]
= 3(x-5)(x+1)