Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Tam giác ABC vuông tại A có O là trung điểm của cạnh BC thì O là:
A) Giao điểm của 3 đường cao của tam giác ABC
B) Giao điểm của 3 đường phân giác của tam giác ABC
C) Giao điểm của 3 đường trung tuyến của tam giác ABC
D) Giao điểm của 3 đường trung trực của tam giác ABC
Cho tam giác ABC vuông tại A ( AB < AC).Tia phân giác của B cắt AC tại M.Kẻ MD vuông góc với BC tại D.a) Chứng minh tam giác BAD cân.b) Chứng minh BM là đường trung trực của đoạn thẳng AD.c) Kéo dài AB và MD cắt ngau tại E. Chứng minh tam giác MEC cân .d) Chứng minh AD // EC.
Gọi O là giao điểm các đường trung trực của tam giác ABC có ba góc nhọn. Vẽ cácđiểm A', B', C' sao cho BC, CA, AB theo thứ tự là các đường trung trực của OA', OB', OC'. CMR: tam giác A'B'C'= tam giác ABC.
Cho tam giác nhọn ABC, AD là đường cao. Vẽ các điểm M, N sao cho AB là trung trực của DM, AC là trung trực của DN. Gọi E, F lần lượt là giao điểm của MN với AC, AB. CMR: a) Tam giác AMN cân b) DE+EF+DF=MN c) DA là phân giác góc EDF d) Giao điểm các đường phân giác của tam giác DEF và trực tâm tam giác ABC trùng nhau
Cho tam giác ABC nhọn, đường cao AH. Vẽ điểm D sao cho AB là đường trung trực của HD. Vẽ điểm E sao cho AC là đường trung trực của HE. Gọi M là giao điểm của DE và AB, N là giao điểm của DE và AC.
a) CM: tam giác DAE cân.
b) CM: HA là tia phân giác của góc MHN.
c) Gọi I là giao điểm của đường thẳng DB và EC. Chứng minh rằng AI vuông góc với DE.
Cho tam giác ABC cân tại A có đường trung trực của cạnh AB và đường trung trực của cạnh AC cắt nhau tại I
a) Chứng minh AI là đường trung trực của cạch BC
b) Đường trung trực của AB cắt BC tại D ,đường trung trực của AC cắt BC tại E . Chứng minh BD = CE
Trên ba cạnh AB; AC: BC của tam giác đều ABC . Lấy các điểm theo thứ tự M; N; P sao cho AM = BN = CP. Gọi O là giao điểm 3 đường trung trực của \(\Delta ABC\). C/minh O cũng là giao điểm ba đường trung trực của \(\Delta MNP\).
Cho tam giác ABC vuông ở A, đường phân giác CD (D thuộc AB). Gọi H là hình chiếu của B trên đường thẳng CD. Trên đường thẳng CD lấy điểm E sao cho H là trung điểm của đoạn thẳng ED. GỌi F là giao điểm của BH và CA.
a) Chứng minh tam giác BHE = tam giác BHD và BF là tia phân giác của góc EBD
b) Chứng minh góc FBA = góc FCH
c) Chứng minh EB // FD
Help mik ik tối nay mình đi học thêm rồi, helppp~