Tìm x,y,z biết: \(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Tìm x và y biết:
a) \(2\left|2x-3\right|=\frac{1}{2}\)
b) \(7,5-3\left|5-2x\right|=-4,5\)
c) \(\left|3x-4\right|+\left|5-2x\right|=0\)
d) \(\left|x+3\right|+\left|x+1\right|=3x\)
Bài 1: Thu gọn các đơn thức, xác định hệ số, phần biế, tìm bậc của các đơn thức sau:
a, \(A=\frac{2}{3}x^2y.\left(-\frac{3}{4}y\right).\left(-x^2\right)\)
b, \(C=0,12y^2.\left(-1\frac{1}{3}xy\right)^2.\left(-xy\right)^3\)
c, \(E=1,2.\left(-xy^2\right)^3.\left(-\frac{3}{5}y^2\right).\left(-0,5x^2y^3\right)^2\)
d, \(B=\frac{11}{12}\left(y^2\right)^3.\left(-\frac{1}{33}x^3\right).\left(-x\right)^2\)
e, \(D=2x^3y.\left(-\frac{1}{2}xy\right)^3.x^2y\)
f, \(F=-2\frac{1}{3}x^3z^2.\left(\frac{1}{3}xy^2z\right)^2.\left(6xyz\right)\)
Tìm \(x,\) biết:
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x+9\right|=5\)
c) \( \left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
bài 1 tính
\(A=\frac{a+b}{b+c}\) biết \(\frac{b}{a}=2;\frac{c}{b}=3\)
bài 2 tìm x
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
bài 3 tìm x,y
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
bài 8 tìm x,y,z
a) x:y:z=3:4:5 và 2x2+2y2-3z2=-100
b)\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
c) \(\left|x-3\right|+\left|y+5\right|+\left|x+y+z\right|=0\)
d) \(\left|2x-5\right|+\left|2y-z\right|+\left|4z-2\right|=0\)
bài 1 :tính bằng cách hợp lí nhất : a) \(\frac{4}{5}\left(\frac{7}{2}+\frac{1}{4}\right)^2\)
b) \(\frac{5^4.20^4}{25^5.4^5}\)
bài 2 : tìm x và y biết x:2 = y: (-5) và x-y =10
bài 3 tìm x,y,z biết \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
a) tìm x, y, z biết:
\(\left(x-\frac{1}{5}\right).\left(y+\frac{1}{2}\right).\left(z-3\right)=0\)và \(x+1=y+2=z+3\)
b) Tìm x biết \(|x^2+|x-1||=x^2+2\)
Tìm x,y,z biết
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)