Rút gọn:
a) \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\left(x\ge0,x\ne1\right)\)
b) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
c) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
Rút gọn
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(B=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
Rút gọn biểu thức:
a) \(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
b) \(B=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\left(x>0,x\ne9\right)\)
c) \(C=\frac{2\sqrt{x}-9}{x-5+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)
Rút gọn:
a) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
b) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
Bài 1 1) Tính a)\(\frac{\sqrt{5}}{4}-\frac{1}{\sqrt{5}-1}\) b)\(\left(8\sqrt{27}-6\sqrt{48}\right):\sqrt{3}\) 2) Cho\(A=\left(1-\frac{4}{\sqrt{x}+1}+\frac{1}{x-1}\right):\frac{x-2\sqrt{x}}{x-1}\left(x>0,x\ne1,x\ne4\right)\)Rút gọn b)Tìm x để A =\(\frac{1}{2}\) Bài 2 Cho biểu thức \(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\) a) Tìm điều kiện xác định ,Rút gọn A b) tình giá trị của A khi \(x=3-2\sqrt{2}\) (Mình xin cảm ơn)
Rút gọn biểu thức :
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\) đkxđ : \(x\ge0;x\ne4\)
b) \(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
c) \(C=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\div\frac{\sqrt{x}}{x+\sqrt{x}}\) đkxđ : x > 0
A=\(\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{2\sqrt{x}}\)
a,Tìm điều kiện xác định
b,Rút gọn A
1) Cho biểu thức \(A=\frac{\sqrt{x}+1}{x+4 \sqrt{x}+4} :\left(\frac{x}{x+2 \sqrt{x}}+\frac{x}{\sqrt{x}+2}\right)\), với x>0
a) Rút gọn A
b) Tìm tất cả các giá trị của x để \(A \geq \frac{1}{3 \sqrt{x}}\)
2) Cho biểu thức \(P=\left(1-\frac{1}{\sqrt{x}}\right) :\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\), với \(x>0\) và \(x \neq 1\)
a) Rút gọn P
b) Tim giá trị của P tại \(x=\sqrt{2022+4 \sqrt{2018}}-\sqrt{2022-4 \sqrt{2018}}\)
3) Cho biểu thức \(P=\left(\frac{x-6}{x+3 \sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right) : \frac{2 \sqrt{x}-6}{x+1}\), với \(x>0 ; x \neq 9\)
a) Rút gọn P
b) Tìm giá trị của x để P=1