a)\(\left\{{}\begin{matrix}2\left|x-6\right|+3\left|y-1\right|=5\\5\left|x-6\right|-4\left|y+1\right|=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|+17\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}4\left|x+y\right|+3\left|x-y\right|=8\\3\left|x+y\right|-5\left|x-y\right|=6\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x^2-xy=24\\2x-3y=1\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+3y=5\\3x^2-y^2+2y=4\end{matrix}\right.\)
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1