Cho a,b,c > 0 và ab + bc + ac = 1. Chứng minh rằng :\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Cho a, b, c > 1. Chứng minh:
a) \(\dfrac{a^2}{a-1}+\dfrac{b^2}{b-1}\ge8\)
b) \(\dfrac{a}{\sqrt{b}-1}+\dfrac{b}{\sqrt{c}-1}+\dfrac{c}{\sqrt{a}-1}\ge12\)
Cho a,b,c >0 và abc=1
\(\dfrac{\sqrt{a}}{2+b\sqrt{a}}+\dfrac{\sqrt{b}}{2+c\sqrt{b}}+\dfrac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Chứng minh :
a, \(\dfrac{a+b+c}{3}\dfrac{>}{ }\sqrt{\dfrac{ab+bc+ca}{3}}\) với a,b,c>0
b,\(\dfrac{a^2+b^2+c^2}{3}\dfrac{>}{ }\left(\dfrac{a+b+c}{3}\right)^2\)
c,\(\dfrac{x^2+2}{\sqrt{x^2+1}}\dfrac{>}{ }2\)
d,\(\dfrac{a^3+b^3}{2}\dfrac{>}{ }\left(\dfrac{a+b}{2}\right)^3\)
Chứng minh a,b,c số thực không âm thỏa ab+bc+ca > 0 \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{2c+1}}+2\sqrt{\dfrac{c}{a+b+c}}\ge2\)
Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR
2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)
Giải:
Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:
\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),
\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)
Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)
=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)
và \(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)
Áp dụng bđt Chebyshev có:
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)
Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)
Vì vậy bđt đã cho ban đầu cũng đúng.
@Ace Legona
Cho các số thực a,b,c>0 thỏa mãn \(a+b+c\le\dfrac{3}{2}\). Tìm Mon của \(S=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
cho a,b,c>0 thỏa a+b+c=6
CMR \(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)