a, \(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{x-1}\)\(=\frac{2x-3\sqrt{x}+1}{x-1}=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\) \(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b, Với \(x=9\), ta có: \(A=\frac{2\sqrt{9}-1}{\sqrt{9}+1}=\frac{5}{4}\)
c, Với \(x\ge0,x\ne1\), để \(A=\frac{1}{2}\Leftrightarrow\frac{2\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{2}\Leftrightarrow4\sqrt{x}-2=\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\) (loại)
Đúng 0
Bình luận (0)