c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
⇔\(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
⇔2x + 2 > 2x - 13
⇔0x > -15
Vậy S=Φ
a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
⇔\(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)
⇔9 - 6x > 10 - 5x
⇔-x > 1
⇔x < -1
Vậy S={x | x < -1}
b) \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
⇔\(\frac{x-2-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
⇔x - 2 - 2x +2 ≤ 3x
⇔-4x ≤ 0
⇔x ≥ 0
Vậy S={x | x ≥ 0}