\(A=3^1+3^2+3^3+...+3^8\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^7+3^8\right)\)
\(=1\left(3^1+3^2\right)+3^2\left(3^1+3^2\right)+...+3^6\left(3^1+3^2\right)\)
\(=1.12+3^2.12+...+3^6.12\)
\(=12.\left(1+3^2+...+3^6\right)⋮12\)
Ta có: \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55\)
\(=7^4.5.11⋮11\)