Cho a, b, c là ba số dương thoả mãn abc = 1. Chứng minh rằng: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho 3 số dương a, b, c. Chứng minh rằng:
\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{a+b+c}{2}\)
1. Chứng minh: \(a^6+b^6+c^6\ge a^5b+ac^5+b^5c\) với \(a,b,c\ge0\)
2. Chứng minh rằng: với a,b,c > 0 thì \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{a^2+c^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. Chứng minh rằng: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a,b,c > 0.
4. Cho a,b,c là độ dài 3 cạnh của tam giác. Chứng minh: \(\dfrac{1}{a+b};\dfrac{1}{a+c};\dfrac{1}{b+c}\) là độ dài của tam giác.
@Ace Legona @Akai Haruma
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
Cho a,b,c là 3 số dương thoả mãn điều kiện a.b.c = 1
Chứng minh rằng :\(\dfrac{1}{3+a^2+2ab}+\dfrac{1}{3+b^2+2bc}+\dfrac{1}{3+c^2+2ca}\) bé hơn hoặc bằng \(\dfrac{1}{2}\)
cho \(a,b,c>0,a\cdot b\cdot c=1\)
chứng minh:
\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2a^2+3}+\dfrac{1}{a^2+2a^2+3}\le\dfrac{1}{2}\)
Cmr nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c=0\) (a,b,c khác 0) thì \(\dfrac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
Cho 3 số a,b,c thỏa mãn \(a+b+c=2017\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2017}\)
Chứng minh rằng ít nhất một trong ba số a,b,c bằng 2017
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2