Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

a) Với x, y \(\ge\)0. Chứng minh \(\left(\sqrt{x}+\sqrt{y}\right)^2\ge2\sqrt{2\left(x+y\right)\sqrt{xy}}\)

b) Cho x, y, z, t \(\ge\)0. Chứng minh: \(\dfrac{x+y+z+t}{4}\ge\sqrt[4]{xyzt}\)

Lightning Farron
1 tháng 8 2017 lúc 22:16

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Hoàng Chi
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Hà thúy anh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết