b: Phương trình hoành độ giao điểm là:
\(2x^2-4x+m=0\)
\(\text{Δ}=16-4\cdot2\cdot m=-8m+16\)
Để (P) tiếp xúc với (d) thì -8m+16=0
hay m=2
b: Phương trình hoành độ giao điểm là:
\(2x^2-4x+m=0\)
\(\text{Δ}=16-4\cdot2\cdot m=-8m+16\)
Để (P) tiếp xúc với (d) thì -8m+16=0
hay m=2
1 vẽ đồ thị hàm số y= x²/2 (P) 2 bằng phép tính hãy xác định toạ độ các giáo điểm parabol (P) với đưownhf thẳng (d) có phương trình y=-1/2 x+1 3 với các giá trị nào của m thì đường thẳng (d) y=X+m a cắt parabol (P) b tiếp xúc với parabol c không cắt parabol
cho hàm số y=x^2 có đồ thị là P . a, vẽ P . b, tìm K để đường thẳng (d) y=2x-K+1 tiếp xúc vớ
2) Cho hàm số 2 y=x2 có đồ thị là parabol (P), hàm số y=(m- 2)x- m+3 có đồ thị là đường thẳng (d).a) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt.b) Gọi A và B là hai giao điểm của (d) và (P), có hoành độ lần lượt là x1 ; x2 . Tìm các giá trị của m để x1,x2 là độ dài hai cạnh của một tam giác vuông cân.
Cho Parabol y=x2 có đồ thị là (P).
a). Vẽ (P)
b). Gọi (D) là đường thẳng có phương trình y=-2x+b. Tìm b biết rằng (D) tiếp xúc với (P). Vẽ (D) và (P) trên cùng một hệ toạ độ. Xác định toạ độ giao điểm của chúng.
1) Vẽ đồ thị hàm số y=1/2 x² 2) Xác định giá trị của m để đường thẳng y=x+m cắt Parabol (P) tại 2 điểm phân biệt
Cho parabol (P): y = \(x^2\) và đường thẳng (d): y = 2x + m
1. Vẽ (P).
2. Tìm m để (P) tiếp xúc (d).
3.Tìm tọa độ tiếp điểm.
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = 1/2x2
a) Vẽ đồ thị parabol (P).
a) Tìm a và b để đường thẳng (d): y = a.x + b đi qua điểm (0;-1) và tiếp xúc với (P).
Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.