bài b câu 1 vì |2x-1|≥0 |2x-1|≥0 với mọi x do đó GTNN của 3+ |2x-1|/14 là 3/14 khi x=0,5
còn đây là bài b cau 1 vì -4x^2+4x/15=-(4x^2-4x+1)+1/15=-(2x-1)^2+1/15 mà -(2x+1)^2≤≤0 nên GTLN -4x^2+4x/15 là 1/15 khi x=-0,5
bài b câu 1 vì |2x-1|≥0 |2x-1|≥0 với mọi x do đó GTNN của 3+ |2x-1|/14 là 3/14 khi x=0,5
còn đây là bài b cau 1 vì -4x^2+4x/15=-(4x^2-4x+1)+1/15=-(2x-1)^2+1/15 mà -(2x+1)^2≤≤0 nên GTLN -4x^2+4x/15 là 1/15 khi x=-0,5
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
Tìm GTNN;GTLN các phân thức:
a) \(\dfrac{x^2+4x+6}{3}\) b) \(\dfrac{4+2\left|1-2x\right|}{5}\)
c)\(\dfrac{5}{4x^2+4x+2y+y^2+3}\)
Tìm GTNN; GTLN của các biểu thức sau:
a) A= x2 - 4x + 1
b) B= 5 - 8x - x2
c) C= 5x - x2
d) D= ( x - 1 )(x + 3)( x + 2 )( x + 6)
e) \(E=\dfrac{1}{x^2+5x+14}\)
f)\(F=\dfrac{2x^2+4x+10}{x^2+2x+3}\)
Cho \(M=\left[\dfrac{\left(x-1\right)^2}{3x+\left(x+1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
a, Rút gọn biểu thức M
b, Tìm giá trị của x để M đạt GTNN
1. Phân tích đa thức thành nhân tử
(a - b) (5x + 3) + 2(a - b)
2. Thực hiện phép tính
a) 3x2 (x - 1)
b) (2x + 3)2 - 4 (x - 3) (x + 3)
3. Rút gọn biểu thức
B= \(\dfrac{2X^3-4X^2+2X}{3X^2-3X}\)
Ba phân thức sau có bằng nhau không?
\(\dfrac{x^2-2x-3}{x^2+x};\dfrac{x-3}{x};\dfrac{x^2-4x+3}{x^2-x}\)
Tìm GTNN; GTLN
\(\text{a) }A=\dfrac{3}{-x^2+2x+4}\)
\(\text{b) }B=\dfrac{x^2+x+1}{x^2+2x+1}\)
\(\text{c) }\dfrac{4x+3}{x^2+1}\)
Cho biểu thức \(B=\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right)\dfrac{4x^2-4}{5}\)
a. Tìm điều kiện của x để giá trị của biểu thức được xác định
b. CMR: khi giá trị của biểu thức được xác định thì nó ko phụ thuộc vào giá trị của biến x
Tìm đa thức A thỏa mãn điều kiện sau :
\(\dfrac{A\left(x-5\right)}{x^2-4x-5}=\dfrac{3x^2+9x}{x^2+4x+3}\)
\(\dfrac{x^2+x-6}{A\left(x-3\right)}=\dfrac{\left(5x-1\right)\left(x-2\right)}{5x^3-x^2+15x-3}\)
\(\dfrac{x^2-25}{2x^2+7x-15}=\dfrac{\left(x-5\right)A}{2x^2+x-6}\)