A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A = \(1-\frac{1}{100}=\frac{99}{100}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A = \(1-\frac{1}{100}=\frac{99}{100}\)
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\) . Tính
Help me ! Tính :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
giải rõ ràng, nhá ! Mik làm cuối cùng nó ra là \(\frac{9899}{9900}\)nhưng chắc o phải đâu vì mấy đứa kia học thêm còn tui kết quả lạ lại ko học thêm nữa ! Thôi ! Help me nhá !
^_^
Tính tổng :
\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...................+\frac{2}{98.99}+\frac{2}{99.100}\)
Tính nhanh tổng các số sau:
a)\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}\)
b)\(\frac{2}{1.3}+\frac{2}{5.3}+\frac{2}{7.5}+\frac{2}{9.7}+\frac{2}{11.9}+...+\frac{2}{2015.2017}\)
c)\(\frac{12}{2.5}+\frac{12}{8.5}+\frac{12}{11.8}+\frac{12}{14.11}+\frac{12}{17.14}+\frac{12}{20.17}\)
d)5+10+15+20+....Và tổng có 255 số hạng
e)2+4+6+8+...+2016
Chú ý:-Những phép tính này không có số thập phân nên các dấu. là dấu nhân nha.
-Giair theo toán lớp 5
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..................................\frac{1}{2015.2016}\)(tổng này có 2005 số hạng
Giúp mk với khó quá
Tính nhanh:
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Tính
A = \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}....\frac{1000^2}{1000.1001}\)