b)P = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
=>P= [(x + y)(x + 4y)][(x + 2y)(x + 3y)] + y^4
=> P = (x² + 5xy + 4y²)( x² + 5xy + 6y²) + y^4
Đặt x² + 5xy + 5y² = t ( t Є Z)
=> A = (t - y²)( t + y²) + y^4
=> A = t² –y^4 + y^4
=> A = t²
=> A = (x² + 5xy + 5y²)²
Vì x, y, z Є Z
=> { x² Є Z,
{ 5xy Є Z,
{ 5y² Є Z
=> x² + 5xy + 5y² Є Z
=> (x² + 5xy + 5y²)² là số chính phương.
Vậy A là số chính phương.
a) Ta có:
\(A=n^3\left(n^2-7\right)^2-36n\)
\(A=n.n^2\left(n^2-7\right)^2-6^2n\)
\(A=n\left[n^2\left(n^2-7\right)^2-6^2\right]\)
\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)
\(A=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(A=n\left(n-1\right)\left(n^2+n-6\right)\left(n+2\right)\left(n^2-2n-3\right)\)
\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+2\right)\left(n-3\right)\)
\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì \(\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 7 số tự nhiên liên tiếp
=> A chia hết cho 3, 5 , 7
Mà 3,5,7 là những số nguyên tố cùng nhau
=> A chia hết cho 3.5.7
=> A chia hết cho 105
b) Ta có:
\(P=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(P=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\)
\(P=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(P=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)
\(P=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)
\(P=\left(x^2+5xy+5y^2\right)^2\)
Vậy P là số chính phương