rút gọn hệ thức :
a) A = \(\frac{\sin2\alpha+\sin3\alpha+\sin4\alpha}{\cos2\alpha+\cos3\alpha+\cos4\alpha}\)
b) B = \(\frac{\sin\alpha+2\sin2\alpha+\sin3\alpha}{\cos\alpha+2\cos2\alpha+\cos3\alpha}\)
Chung minh rang voi moi goc luong giac α lam cho bieu thuc xac dinh thi
a) \(\dfrac{1-sin2\alpha}{1+sin2\alpha}\)=cot\(^2\)(\(\dfrac{\pi}{4}\)+α) b) \(\dfrac{sin\alpha+sin\beta cos\left(\alpha+\beta\right)}{cos\alpha-sin\beta sin\left(\alpha+\beta\right)}\)=tan\(\left(\alpha+\beta\right)\).
rút gọn biểu thức : a) A = \(\frac{sin2\alpha+sin3\alpha+sin4\alpha}{cos2\alpha+cos3\alpha+cos4\alpha}\) ; b) B = \(\frac{sin\alpha+2sin2\alpha+sin3\alpha}{cosa+2cos2\alpha+cos3a}\)
1. Cho \(2\cos\left(\alpha+\beta\right)=\cos\alpha\cos\left(\pi+\beta\right)\)
Tính \(A=\dfrac{1}{2\sin^2\alpha+3\cos^2\alpha}+\dfrac{1}{2\sin^2\beta+3\cos^2\beta}\)
2. Rút gọn: a) \(A=4\cos\dfrac{2x}{3}\cos\dfrac{\pi+2x}{3}\cos\dfrac{\pi-2x}{3}\)
b) \(B=\dfrac{\sin\left(a-b\right).\sin\left(a+b\right)}{\cos^2a.\sin^2b}-\tan^2a.\cot^2b\)
3. Chứng minh rằng: Nếu \(2\tan a=\tan\left(a+b\right)\) thì:
a) \(\sin b=\sin a.\cos\left(a+b\right)\)
b) \(3\sin b=\sin\left(2a+b\right)\)
Rút gọn các biểu thức :
a) \(\dfrac{\sin2\alpha+\sin\alpha}{1+\cos2\alpha+\cos\alpha}\)
b) \(\dfrac{4\sin^2\alpha}{1-\cos^2\dfrac{\alpha}{2}}\)
c) \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
d) \(\dfrac{1+\sin\alpha-2\sin^2\left(45^0-\dfrac{\alpha}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)
a) cho \(\tan\alpha\) = 5 . tính \(\frac{\sin\alpha}{\sin^3\alpha+\cos^3\alpha}\) ; b) chứng minh đẳng thức : \(\frac{1+\sin\chi+\cos2\chi+\sin3\chi}{1+2\sin\chi}\) = 2cos2\(\chi\)
Rút gọn cac biểu thức sau:
\(A=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(B=sin\left(x+\dfrac{85\pi}{2}\right)+cos\left(2017\pi+x\right)+sin^2\left(33\pi+x\right)+sin^2\left(x-\dfrac{5\pi}{2}\right)+cos\left(x+\dfrac{3\pi}{2}\right)\)\(C=sin\left(x+\dfrac{2017\pi}{2}\right)+2sin^2\left(x-\pi\right)+cos\left(x+2019\pi\right)+cos2x+sin\left(x+\dfrac{9\pi}{2}\right)\)
Cho \(\cos\alpha=\dfrac{1}{3}\). Tính \(\sin\left(\alpha+\dfrac{\pi}{6}\right)-\cos\left(\alpha-\dfrac{2\pi}{3}\right)\) ?
Tính :
a) \(\cos\left(\alpha+\dfrac{\pi}{3}\right)\), biết \(\sin\alpha=\dfrac{1}{\sqrt{3}}\) và \(0< \alpha< \dfrac{\pi}{2}\)
b) \(\tan\left(\alpha-\dfrac{\pi}{4}\right)\), biết \(\cos\alpha=-\dfrac{1}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\)
c) \(\cos\left(a+b\right);\sin\left(a-b\right)\), biết
\(\sin a=\dfrac{4}{5};0^0< a< 90^0\) và \(\sin b=\dfrac{2}{3};90^0< b< 180^0\)