Giải:
a) Ta có: AB + BE = AE
AD + DC = AC
Mà AB = AD, BE = DC
\(\Rightarrow AE=AC\) (*)
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
AE = AC ( theo (*) )
\(\widehat{A}\): góc chung
AB = AD ( gt )
\(\Rightarrow\Delta ABC=\Delta ADE\) ( c - g - c )
\(\Rightarrowđpcm\)
b) Gọi G là điểm cắt nhau của đường thẳng a và đoạn thẳng AB
Vì a là đường trung trực của AB nên G là trung điểm của AB và \(\widehat{G_1}=\widehat{G_2}=90^o\)
Xét \(\Delta AMG\) và \(\Delta BMG\) có:
\(AG=GB\left(=\frac{1}{2}AB\right)\)
\(\widehat{G_1}=\widehat{G_2}=90^o\)
MG: cạnh chung
\(\Rightarrow\Delta AMG=\Delta BMG\left(c-g-c\right)\)
\(\Rightarrow MA=MB\) ( cạnh tương ứng )
\(\Rightarrowđpcm\)
phần a) làm giống NGUYỄN HUY TÚ nha; phần b)
Xét tam giác AMI và tam giác BMI có:
AI = BI( vì d là đường trung trực của đoạn thẳng AB)
IM là cạnh chung (gt)
góc AIM = góc BIM ( vì d vuông góc với AB tại I)
=> tam giác AMI= tam giác BMI( c-g-c)
=> AM = BM ( 2 cạnh tương ứng)
Vậy............