1, Lập các tỉ lệ thức từ các đẳng thức sau :
a) (-2) . 15 = 5 . (-6)
b) 2,4 . 3,2 = 8 . 0,96
2, Tìm x trong các tỉ lệ thức
a) \(\dfrac{-1}{x}\) = \(\dfrac{3}{18}\)
b) 2,5 : 7,5 = x : \(\dfrac{3}{5}\)
3, Tìm x biết
a) 2x - 15 = 37 b) \(|2x+1|\)-\(\dfrac{3}{2}\)= \(\dfrac{7}{6}\)
4, Tìm các số x, y, z biết
a) \(\dfrac{x}{y}=\dfrac{17}{3}\) và x + y = -60
b) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{7}\) và x + y + z = 42
c) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và x - y + y = -49
a) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ( a + 2c )( b + d ) = ( a + c )( b + 2d )
b) Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Chứng minh rằng biểu thức sau có giá trị nguyên : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
1 a, tìm x,y,z \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và x-2y+3z=-10
b, cho bốn số a,b,c,d khác 0 và thỏa mãn \(b^2\) =ac; \(c^2\)=bd ; \(b^3\) + \(c^3+d^3\ne0\)
CMR \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
c, cho các số a,b,c x,y,z thỏa mãn :abc\(\ne0\) và
\(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) C/M:
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)(với giả thiết các tỉ số đều có nghĩa)
1/CMR: \(A=15^5-5^6\) chia hết cho 119
B=3\(^{20}\)-3\(^{17}\) chia hết 78
2/Tìm x \(\in\)Z để C=\(\dfrac{\sqrt{x}+4}{\sqrt{x}-1}để\) có giá trị là số nguyên
3/Cho dãy tỉ số bằng nhau:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tính giá trị của biểu thức:
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Giups mk nhé
1.
a. Cho \(\dfrac{a}{2b+c}=\dfrac{b}{2c+a}=\dfrac{c}{2a+b}\left(a,b,c>0\right)\). Tính giá trị mỗi tỉ số
b. Tim x,y,z biết: \(\dfrac{2x-y}{5}=\dfrac{3y-2z}{15}\)và x + z = 2y
Câu 1 : (4d) Tính giá trị của biểu thức :
\(a,A=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^3\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(b,B=1+3^2+3^3+........+3^{2018}\)
Câu 2 : (5d)
a, Tìm x biết : \(\dfrac{x+1}{125}+\dfrac{x+2}{124}+\dfrac{x+3}{123}+\dfrac{x+4}{122}+\dfrac{x+146}{5}=0\)
b, Tìm các cặp số nguyên x;y sao cho \(2018^{\left|\left|x^2-y\right|-8\right|+y^2-1}=1\)
c, Tìm x;y;z biết rằng :\(xy=z;yz=4x;xz=9y\)
Câu 3 : (5d)
a, Biết xyz = 1. Tính tổng :\(A=\dfrac{5}{x+xy+1}+\dfrac{5}{y+yz+1}+\dfrac{5}{z+zx+1}\)
b, Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{3\cdot a^6+c^6}{3\cdot b^6+d^6}=\dfrac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(b+d\ne0\right)\)
c, Cho :\(a;b;c>0;\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+d-c}{c}\)
Tính giá trị biểu thức :
\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Câu 4 : (4d)
a, Tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|2016-x\right|+\left|2017-x\right|\left|2018-x\right|\)
b, Cho biểu thức : \(B=\dfrac{8-x}{x-3}\). Tìm các giá trị nguyên của x để B có giá trị nhỏ nhất.
Câu 5 : (2d) { Câu dễ nhất lun nè!!!!!}
Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{z}{x+y+t}=\dfrac{t}{x+y+z}\)
CMR : A là một số nguyên, biết :
\(A=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{x+t}{y+z}\)
Đây là đề thi để loại hsg ai làm đc làm hộ mk nhé, đặc biệt là câu 3a và câu 4b! Thanks nhìu !!!!!!!!!!
Câu 1: tìm x biết \(\left[\dfrac{1}{\left(2.5\right)}+\dfrac{1}{\left(5.8\right)}+\dfrac{1}{\left(8.11\right)}+.....+\dfrac{1}{\left(65.68\right)}\right].x-\dfrac{7}{34}=\dfrac{19}{68}\)
Câu 2: tìm số tự nhiên n biết 2n +2n-2 = 5/2
Câu 3: nếu\(0< a< b< c< d< e< f\)
và \(\left(a-b\right)\left(c-d\right)\left(e-f\right)x=\left(b-a\right)\left(d-c\right)\left(f-e\right)\)thì x=..........
Câu 4: cho 3 số x;y;z khác 0 thỏa mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
khi đó \(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)có giá trị bằng ...............
Câu 5: số giá trị của x thỏa mãn \(|x+1|+|x-1012|+|x+3|+|x+1013|=2013\)
Câu 6: biết tổng các chữ số của 1 số k đổi khi chia số đó cho 5. số dư của số đó khi chia cho 9 là...........
Câu 7: độ dài cạnh góc vuông của 1 tam giác vuông can ABC tại A có đường phân giác kẻ từ đỉnh A bằng \(\dfrac{3\sqrt{2}}{2}cm\)là .........cm
Câu 8: rút gọn \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2013}}{2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}}\)ta đc A=............
Câu 9: cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a};a+b+c\ne0\)và \(a=2014\) khi đó \(a-\dfrac{2}{19}b+\dfrac{5}{53}c=.......\)
Câu 10: tìm x;y;z biết\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\) trả lời x=....; y=....; z=....
Bài 1: Tính;
a/ M = \(\dfrac{4^6.9^5+120.6^9}{8^4.3^{12}-6^{11}}\)
b/ N = \(\left(-\dfrac{3}{4}+\dfrac{5}{13}\right):\dfrac{2}{7}-\left(2\dfrac{1}{4}+\dfrac{8}{13}\right):\dfrac{2}{7}\)
Bài 2:
a, Tìm 2 số khác 0 biết rằng tổng, hiệu, tích của chúng tỉ lệ với 5; 1; 12
b, Cho: x, y, z khác 0 và x2 = yz. Chứng minh rằng: \(\dfrac{x^2+y^2}{x^2+z^2}=\dfrac{y}{z}\)
Khuya rồi các bạn cố gắng giúp mk nhé !!! THANKS TRC
1. Cho \(B=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{99}{100}\) Chứng minh rằng : \(\dfrac{1}{15}< B< \dfrac{1}{10}\)
2.Tìm x,y,z biết : \(\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{3}\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
3.Chứng minh rằng nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
4.Cho x,y,z,t là các số thực dương. Chứng minh rằng biểu thức sau không nhận giá trị nguyên :
\(M=\dfrac{x}{x+y+z}=\dfrac{y}{y+z+t}=\dfrac{z}{z+t+x}=\dfrac{t}{t+x+y}\)
5.Cho các số nguyên dương a,b,c,d,m,n,p thỏa mãn :\(a^2+b^2+c^2=m^2+n^2+p^2\) . Chứng minh rằng tổng \(a+b+c+m+n+p\) là hợp số