a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(\Rightarrow A=\left(\frac{1-2^2}{2^2}\right)\left(\frac{1-3^2}{3^2}\right)....\left(\frac{1-100^2}{100^2}\right)\)
\(\Rightarrow A=-\left(\frac{2^2-1}{2^2}\right).-\left(\frac{3^2-1}{3^2}\right)....-\left(\frac{100^2-1}{100^2}\right)\) (có lẻ số hạng)
\(\Rightarrow A=-\left(\frac{\left(2-1\right).\left(2+1\right)}{2.2}\right)\left(\frac{\left(3-1\right)\left(3+1\right)}{3.3}\right)...\left(\frac{\left(100-1\right)\left(100+1\right)}{100.100}\right)\)
\(\Rightarrow A=-\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)
\(\Rightarrow A=-\frac{\left(1.2.3....99\right)\left(3.4.5....101\right)}{\left(2.3.4....100\right)\left(2.3.4....100\right)}\)
\(\Rightarrow A=-\frac{1.101}{100.2}\)
\(\Rightarrow A=-\frac{1}{2}.\frac{101}{100}< -\frac{1}{2}\)
b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
-Vì 1 là số nguyên nên để B nhận gtrị nguyên khi \(\frac{4}{\sqrt{x}-3}\) nhận gtrị nguyên
- Vì x nguyên => \(\sqrt{x}\) là số nguyên khi x là số chính phương hoặc \(\sqrt{x}\) là số vô tỉ nếu x không phải là số chính phương
- Nếu \(\sqrt{x}\) là số vô tỉ \(\Rightarrow\sqrt{x}-3\) cũng là số vô tỉ
=> Không có gtrị nguyên nào của x để \(\frac{4}{\sqrt{x}-3}\) nhận giá trị nguyên
=> \(\sqrt{x}\) phải là số nguyên
Khi đó để \(\frac{4}{\sqrt{x}-3}\) nhận gtrị nguyên khi \(\sqrt{x}-3\inƯ\left(4\right)\)
\(\Rightarrow\sqrt{x}-3\in\left\{1,2,4,-1,-2,-4\right\}\)
Ta có bảng sau
\(\sqrt{x}-3\) | 1 | 2 | 4 | -1 | -2 | -4 |
\(\sqrt{x}\) | 4 | 5 | 7 | 2 | 1 | -1 |
\(x\) | 16 | 25 | 49 | 4 | 1 | Loại |
A | 5 | 3 | 2 | -3 | -1 |
Vậy \(x\in\left\{1;4;16;25;49\right\}\)