B. Xin lỗi nãy mình nhầm
Xét \(\Delta ABCvà\Delta HAC\) có:
góc A = góc H ( =90o)
góc C chung
Do đó: \(\Delta ABC\sim\Delta HAC\) (g.g)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=BC.CH\) ( ĐPCM)
a.
Xét \(\Delta ABH\) và \(\Delta CBA\) có:
góc H bằng góc A(=90o)
góc B chung
Do đó: \(\Delta ABH\sim CBA\) (g-g)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\Rightarrow AB^2=BC.BH\) ( ĐPCM)
b.
Xét \(\Delta ABC\) và \(\Delta HBC\) có:
góc A = góc H ( =90o)
góc C chung
Do đó: \(\Delta ABC\sim\Delta HBC\)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\) \(\Rightarrow AC^2=BC.CH\) (ĐPCM)
Ta có: \(\Delta ABH\sim\Delta CBA\)
=> góc BAH = góc ACB
Xét \(\Delta ABH\) và \(\Delta CAH\)
có: góc H = 90o
góc BAH = góc ACB (cmt)
Do đó: \(\Delta ABH\sim\Delta CAH\)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\Rightarrow AH^2=HB.HC\) ( D0PCM)
d.
Ta có: \(\Delta ABH\sim\Delta CBA\)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\Rightarrow AB.AC=BC.AH\) ( ĐPCM)
e.
Ta có tam giác ABC vuông tại A
=> BC2 = AB2 + AC2 ( định lý Pytago)
f. Ta có: \(\Delta ABH\sim\Delta CBA\)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH^2.BC^2=AB^2.AC^2\)
\(\Leftrightarrow AH^2\left(AB^2+AC^2\right)=AB^2.AC^2\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2.AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)