Ta có:
\(x^2+3x-10=x^2-2x+5x-10\)
\(=x\left(x-2\right)+5\left(x-2\right)\)
\(=\left(x-2\right)\left(x+5\right)\)
Để \(f\left(x\right)=ax^3+bx^2+5x-50\) chia hết cho \(x^3+3x-10\) thì
\(\left\{{}\begin{matrix}f\left(2\right)=8a+4b+10-50=0\\f\left(-5\right)=-125a+25b-25-50=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+4b=40\\-125a+25b=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(2a+b\right)=40\\-25\left(5a+b\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=10\\5a+b=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{13}{3}\\b=\dfrac{56}{3}\end{matrix}\right.\)