a, Ta có :
\(A=\dfrac{15}{14}+\dfrac{16}{15}+\dfrac{17}{16}+\dfrac{18}{17}\)
\(\Leftrightarrow A=\left(1+\dfrac{1}{14}\right)+\left(1+\dfrac{1}{15}\right)+\left(1+\dfrac{1}{16}\right)+\left(1+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=\left(1+1+1+1\right)+\left(\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=4+\left(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}\right)\)
\(\Leftrightarrow A>4\)
b. \(B=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2019}\)
\(\Leftrightarrow B=\left(1-\dfrac{1}{2016}\right)+\left(1-\dfrac{1}{2017}\right)+\left(1-\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=\left(1+1+1\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=3-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B< 3\)