A=\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\)+\(\frac{1}{15}\)+\(\frac{1}{16}\)+\(\frac{1}{17}\)
A< \(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)+\(\frac{1}{12}\)
A<6.\(\frac{1}{12}\)
A<\(\frac{1}{2}\)
Vậy A<\(\frac{1}{2}\)
b.\(\frac{53}{57}\)=1-\(\frac{4}{57}\)=1-\(\frac{40}{570}\)
\(\frac{531}{571}\)=1-\(\frac{40}{571}\)
Ta có:\(\frac{40}{570}\)>\(\frac{40}{571}\)=> 1-\(\frac{40}{570}\)<1-\(\frac{40}{571}\)=>\(\frac{53}{57}\)<\(\frac{531}{571}\)