9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\)
10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một parabol. Người ta muốn cắt ngang cái bánh để chia nó thành hai phần có thể tích bằng nhau. Biết rằng bánh cao 36cm36cm và bán kính đường tròn đáy là 6cm.6cm. Hỏi nhát cắt cần tìm có độ cao hh so với mặt bàn là bao nhiêu cm? A.\(h=9\sqrt{2}\) B.\(h=18\) C.\(h=18\left(2-\sqrt{2}\right)\) D.\(h=18-4\sqrt{2}\)
11.Tính nguyên hàm \(I=\int\frac{dx}{cosx}\) được kết quả \(I=ln\left|tan\left(\frac{x}{a}+\frac{\pi}{b^2}\right)\right|+C\) với \(a,b,c\in Z\). Giá trị của \(a^2-b\) là: A.8 B.0 C.2 D.4
10. Đặt hệ trục tọa độ Oxy vào mặt cắt dọc của bánh sau cho Oy trùng với trục chính giữa bánh và Ox đi qua mặt cắt đáy bánh. Do bánh cao 36cm và bán kính đáy là 6cm nên parabol có đỉnh \(I\left(0;36\right)\) và giao Ox tại \(A\left(6;0\right);B\left(-6;0\right)\) \(\Rightarrow\) phương trình parabol có dạng \(y=-x^2+36\)
Thể tích bánh:
\(V=\pi\int\limits^{36}_0\left(36-y\right)dy=648\pi\left(cm^3\right)\)
Thể tích của phần dưới khi bị cắt một đường qua độ cao \(h\): (\(0< h< 36\))
\(V=\pi\int\limits^h_0\left(36-y\right)dy=\left(36h-\frac{h^2}{2}\right)\pi\)
\(\Rightarrow\left(36h-\frac{h^2}{2}\right)\pi=\frac{648\pi}{2}\Leftrightarrow\frac{-1}{2}h^2+36h-324=0\)
\(\Rightarrow h=36-18\sqrt{2}=18\left(2-\sqrt{2}\right)\) (cm)
Câu 11:
\(I=\int\frac{dx}{cosx}=\int\frac{cosxdx}{cos^2x}=\int\frac{d\left(sinx\right)}{1-sin^2x}=\frac{1}{2}\int\left(\frac{1}{1+sinx}+\frac{1}{1-sinx}\right)d\left(sinx\right)=\frac{1}{2}ln\left|\frac{1+sinx}{1-sinx}\right|+C\)
Biến đổi biểu thức phía trong hàm logarit:
\(\frac{1+sinx}{1-sinx}=\frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}.cos\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2}{\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}=\left(\frac{\sqrt{2}sin\left(\frac{x}{2}+\frac{\pi}{4}\right)}{\sqrt{2}cos\left(\frac{x}{2}+\frac{\pi}{4}\right)}\right)^2\)
\(=tan^2\left(\frac{x}{2}+\frac{\pi}{4}\right)\)
Vậy \(I=\frac{1}{2}ln\left|tan^2\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C=ln\left|tan\left(\frac{x}{2}+\frac{\pi}{2^2}\right)\right|+C\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\) \(\Rightarrow a^2-b=2\)