\(\dfrac{6n+8}{2n+1}=\dfrac{\left(6n+3\right)+5}{2n+1}=3+\dfrac{5}{2n+1}\)
Do đó để \(\left(6n+8\right)⋮\left(2n+1\right)\) thì \(2n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
Ta có bảng sau:
\(2n+1\) | \(1\) | \(5\) |
\(2n\) | \(0\) | \(4\) |
\(n\) | \(0\) | \(2\) |
Vậy để \(\left(6n+8\right)⋮\left(2n+1\right)\) thì \(n\in\left\{0;2\right\}\)
#Kễnh