\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{3;-2\right\}\)
ĐKXĐ: x<>3
PT=>x^2+2x-3x-6=0
=>x^2-x-6=0
=>(x-3)(x+2)=0
=>x=3(loại) hoặc x=-2(nhận)