\(\dfrac{5x-2}{x+1}=4\) ĐK : \(x\ne-1\)
\(\Leftrightarrow\dfrac{5x-2}{x+1}=\dfrac{4\left(x+1\right)}{x+1}\)
`=>5x-2=4(x+1)`
`<=> 5x-2=4x+4`
`<=>5x-4x=4+2`
`<=>x=6(TM)`
\(\dfrac{5x-2}{x+1}=4\) ĐK : \(x\ne-1\)
\(\Leftrightarrow\dfrac{5x-2}{x+1}=\dfrac{4\left(x+1\right)}{x+1}\)
`=>5x-2=4(x+1)`
`<=> 5x-2=4x+4`
`<=>5x-4x=4+2`
`<=>x=6(TM)`
Giải pt: \(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\dfrac{5+96}{x^2-16}=\dfrac{2x—1}{x+4}-\dfrac{3x-1}{4-x}\)
\(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{12+x-5x^2}\)
26 ,giải phương trình.
a,\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
b,\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,\(\frac{x-1}{x+2}+\frac{x-2}{x+1}=\frac{2\left(x^2+2\right)}{x^2-4}\)
d,\(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giải phương trình chứa ẩn ở mẫu:
a. (x+1)/(x-2) - (x-1)(x+2) = 2(x2 + 2)/(x2 - 4)
b. (2x+1)/(x-1) = 5(x-1)/(x+1)
c. (x-1)/(x+2) - (x)/(x-2) = (5x-2)/(4 - x2)
d. (x-2)/(2+x)-(3)/(x-2)= 2(x-11)/(x2 - 2)
e. (x-1)/(x+1)-(x2 + x - 2)/(x+1)= (x+1)/(x-1) - x - 2
f. (x+1)/(x-1)-(x-1)/(x+1)=(4)/(x2 - 1)
g. (3)/4(x-5) + (15)/(50-2x2)= - (7)/6(x+5)
h. (12)/(8+x3)= 1 + (1)/(x+2)
k. (x+25)/(2x2 - 50)-(x+5)(x2 - 5x)= (5-x)(2x2 + 10x)
Help me... Giup đk chừng nào hay chừng đó ạ.
Bài 1:a, \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
b, \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c,\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
d,\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\)
e,\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)
f,\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
g,\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
h,\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
i,\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\)
j,\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\)
\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
8. Giải phương trình sau:
b) \(\frac{-x^2+12x+4}{x^2+3x-4}=\frac{12}{x+4}+\frac{12}{3x-3}\)
9. Giải phương trình chứa ẩn ở mẫu sau:
\(\frac{1}{2x^2+5x-7}-\frac{2}{x^2-1}=\frac{3}{2x^2-5x-7}\)
giải phương trình:
\(\dfrac{1}{x^2+5x+4}+\dfrac{1}{x^2+11x+28}+\dfrac{1}{x^2+17x+70}+\dfrac{1}{x^2+23x+130}=\dfrac{4}{13}\)