1. 6x(x - 10) - 2x+20=0 6. 3x2 - 6x+3=0
2. 3x2(x - 3) + 3(3 - x)=0 7. 4x2 - 10x+2=0
3. x2 - 8x+16=2(x -4) 8. x2 - 12x -18=0
4. x2 - 16 + 7x ( x+4)=0 9. 3x2 - 10x+3=0
5. x2 - 13x - 14=0 10. 5x2 - 10x+10=0
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0Tính giá trị nguyên của x thỏa mãn :
\(2\times2^2\times2^3......\times2^x=32768\)
Tính :
a ) S= 2+4+6+...+2018 ( giải bằng hai cách )
b ) 10 + 102 +103 +...+10100 ( giaỉ bằng hai cách )
c ) \(S=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}\)( giải bằng hai cách )
d ) \(S=\dfrac{1!}{3!}+\dfrac{2!}{4!}+\dfrac{3!}{5!}+....+\dfrac{2018!}{2020!}\)
biết rằng : n! = \(1\times2\times3\times...\times n\)
VD : 1! = 1
2! = \(1\times2\)
3! = \(1\times2\times3\)
4! \(1\times2\times3\times4\)
Giải các phương trình sau:
9) x-49/ 50 + x-50/ 49 = 49/ x-50 + 50/ x-49
7) x+25/ 75 + x+30/70 = x+35/65 + x+40/60
8) 99-x/101 + 97-x/103 + 95-x/105 + 93-x/107 = 4
10) x+14/86 + x+15/85 + x+16/84 + x+17/83 + x+116/4 = 0
Cho các số thực x, y thỏa mãn - 4 ≤ x ≤ 4; 0 ≤ y ≤ 16 . Chứng minh rằng:
\(x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\) ≤ 16
\(4^x -10.2^x+16 =0\)
9x^2-16-x.(3x-4)=0
9x^2-16-x.(3x-4)=0