2n-1 ⋮ 2n-1 => 4n-2 ⋮ 2n-1
=> (4n-2)-(4n-5) ⋮ 2n-1
=> 3 ⋮ 2n-1
=> 2n-1 ∈ Ư(3)
=> 2n ∈ { -2;0;2;4}
lập bảng
2n | -2 | 0 | 2 | 4 |
n | -1 | 0 | 1 | 2 |
vậy n ∈{-1;0;1;2}
\((4n-5)\) ⋮ \((2n-1)\)
\(4n-5=4n-2-3=2(2n-1)-3\)
vì \(2(n-1)\) ⋮ \((2n-1)\) nên \(-3\) ⋮ \((2n-1)\)
\(=>(2n-1)\) ∈ \(Ư(3)\)
\(=>(2n-1)\) ∈{ \({1;3}\) }
\(2n-1=1\)
\(2n=1+1\)
\(2n=2\)
\(n=2:2\)
\(n=1\) (nhận)
\(2n-1=3\)
\(2n=3+1\)
\(2n=4\)
\(\)\(n=4:2\)
\(n=2\) (nhận)
vậy \(n\) ∈ {\(1;2\) }