\(=2\left|a-3\right|=2\left(3-a\right)=6-2a\)
\(=2\left|a-3\right|=2\left(3-a\right)=6-2a\)
cm các bđt:
1, \(a^3+b^3\ge\dfrac{\left(a+b\right)^3}{4}\)
2, \(a^4+b^4\ge\dfrac{\left(a+b\right)^4}{8}\)
Giúp em với ạ, cảm ơn nhìuu
Bài 1: Rút gọn các biểu thức sau:
a) (\(\left(\sqrt{12}-\sqrt{75}+\sqrt{48}\right):\sqrt{3}\)
b) \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{3-1}}\)
c) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)\) với 0 \(\le\) a \(\ne\)1
Bài 2:
a) Vẽ đồ thị (P) của hàm số y = ax2
b) Chứng minh rằng đường thẳng (d) y = kx +1 luôn cắt đồ thị (P) tại hai điểm phân biệt với mọi k
Bài 3
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-2y=-2\\\dfrac{1}{2}x+\dfrac{2}{3}y=5\end{matrix}\right.\)
b) Giải phương trình: x4 +x2 -2 = 0
c) Cho phương trình: x2 - 2(m-1)x + 2m -4 =0 có hai nghiệm x1x2. Tìm giá trị nhỏ nhất của biểu thức A = x11x22
Bài 4: Hai người cùng làm chung một công việc trong \(\dfrac{12}{5}\) giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc?
Bài 5: Cho đường tròn(O;R) từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d) lấy điểm M bất kì ( M khác A) kẻ các tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC vuông góc MB, BD vuông góc MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB
a) Chứng minh tứ giác AMBO nội tiếp
b) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn
c) Chứng minh OI.OM = R2; OI. IM = IA2
d) Chứng ming OAHB là hình thoi
e) Chứng minh ba điểm O,H,M thẳng hàng
cho biểu thức \(P=a^4+b^4-ab\), với a,b là các số thực thỏa mãn \(a^2+b^2+ab=3\)
tìm Min và MAx của biểu thức P
Biết biểu thức
\(P=\sqrt{\dfrac{1}{4}+\dfrac{1}{1^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{5^2}}+...+\sqrt{\dfrac{1}{4}+\dfrac{1}{399^2}+\dfrac{1}{401^2}}=\dfrac{a}{b};\)
, với a và b là các số nguyên dương, a/ b là phân số tối giản. Khi đó giá trị của biểu thức
Q= a −100b bằng
A. 400 . B. 401. C. 403. D. 402 .
Tìm GTLN và GTNN của A= 3\(\sqrt{x-1}+4\sqrt{5-x}\) với 1≤x≤5
Bài 4: cho parabol (P) : y = ax2
a) Tìm a biết (P) đi qua điểm C( -4;-4). Vẽ (P) với a vừa tìm được và vẽ đường thẳng (d)
y = \(\dfrac{x}{4}\)– 3 trên cùng mặt phẳng tọa độ
b) Tìm tọa độ điểm của (p) và (d) bằng phép tính
Cho a,b > 1 và a + b \(\ge\) 4 . Tìm GTNN của P = \(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{b^4}{\left(a-1\right)^3}\)
cho a,b,c là số thực dương chứng minh
\(\dfrac{2\left(a^4+b^4+c^4\right)}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}+\dfrac{ab+bc+ca}{a^3+b^3+c^3}\ge2\)
Cho biểu thức: \(A=\dfrac{\sqrt{x}-1}{2\sqrt{x}+1}-\dfrac{3}{1-2\sqrt{x}}-\dfrac{4\sqrt{x}+4}{4x-1}\) và \(B=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)với x > 0 , x = 1/4
a. TÍnh giá trị của biểu thức B biết \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
b. Rút gọn biểu thức A
cho A = \(\left(\dfrac{3}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}+1}\) với x ≥ 0 và x ≠ 1
a, Rút gọn
b, tìm x để A = \(\dfrac{5}{4}\)