ĐKXĐ: \(x\ge-1\)
\(3x^2-2x-2=\dfrac{6}{\sqrt{30}}\sqrt{\left(x+1\right)\left(x^2+2x+2\right)}\)
\(\Leftrightarrow3\left(x^2+2x+2\right)-8\left(x+1\right)=\dfrac{6}{\sqrt{30}}\sqrt{\left(x+1\right)\left(x^2+2x+2\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+2}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow3a^2-8b^2-\dfrac{6}{\sqrt{30}}ab=0\)
\(\Leftrightarrow\left(3a-\sqrt{30}b\right)\left(a+\dfrac{4\sqrt{30}}{15}b\right)=0\)
\(\Leftrightarrow3a=\sqrt{30}b\)
\(\Leftrightarrow3\sqrt{x^2+2x+2}=\sqrt{30\left(x+1\right)}\)
\(\Leftrightarrow9\left(x^2+2x+2\right)=30\left(x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=2\end{matrix}\right.\)