Ta có : \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2-8x+9x-6=2x-3x^2-2+3x\)
\(\Leftrightarrow12x^2-8x+9x-6-2x+3x^2+2-3x=0\)
\(\Leftrightarrow15x^2-4x-4=0\)
\(\Leftrightarrow15x^2-10x+6x-4=0\)
Lỗi :vvvv
\(\Leftrightarrow10x\left(\dfrac{3}{2}x-1\right)+4\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left(10x+4\right)\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...
(3x-2)(4x+3)=(2-3x)(x-1)
=(3x-2)(4x+3)-(2-3x)(x-1)
=(3x-2)(4x+3)+(3x-2)(x-1)
=(3x-2)(4x+3+x-1)
=(3x-2)(5x+2)
=15x²-10x-4+6x=15x²-4x-4
Ta có: \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(4x+3\right)-\left(2-3x\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x+3\right)+\left(3x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x+3+x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\5x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{2}{5}\right\}\)