\(3+2^{x-1}=24-\left[4^2-\cdot\left(3\right)\right]\)
\(\Rightarrow3+2^{x-1}=24-\left(13\right)\)
\(\Rightarrow3+2^{x-1}=11\)
=> 2x-1=8
Mà : \(8=2^3\)
\(\Rightarrow2^{x-1}=2^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
\(3+2^{x-1}=24-\left(4^2-\left(2^2-1\right)\right)\)
\(2^{x-1}=24-3-\left(16-4+1\right)\)
\(2^{x-1}=21-13\)
\(2^{x-1}=8\)
\(2^{x-1}=2^3\)
\(x-1=3\)
x = 3 + 1
x = 4
\(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Rightarrow3+2^{x-1}=24-\left(16-3\right)\)
\(\Rightarrow3+2^{x-1}=24-13\)
\(\Rightarrow3+2^{x-1}=11\)
\(\Rightarrow2^{x-1}=8\)
\(\Rightarrow2^{x-1}=2^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
Vậy x = 4