Giải:
Gọi số tiền thưởng của 3 người lần lượt là a, b, c ( a,b,c thuộc N* )
Ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và \(a+b=5600000\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{3+5}=\frac{5600000}{8}=700000\)
+) \(\frac{a}{3}=700000\Rightarrow a=2100000\)
+) \(\frac{b}{5}=700000\Rightarrow b=3500000\)
+) \(\frac{c}{7}=700000\Rightarrow c=4900000\)
Vậy người thứ nhất được 2100000 đồng ( 2.1 triệu )
người thứ 2 được 3500000 đồng ( 3.5 triệu )
người thứ 3 được 4900000 đồng ( 4.9 triệu )
Gọi tiền thưởng của 3 người lần lượt là a,b,c (triệu)(a,b,c>0).
Tổng số tiền thưởng của người 1 và người 2 là 5,6 triệu đồng nên a+b=5,6
Số tiền thưởng tỉ lệ thuận với năng suất lao động nên:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{3+5}=\frac{5,6}{8}=0,7\)
\(\Rightarrow a=0,7.3=2,1\) ;\(b=0,7.5=3.5\) ;\(c=0,7.7\) =4,9
Do đó tổng tiền thưởng của 3ng là:2,1+3,5+4,9=10,5(tr).