2x2 + 3x - 2= 2x (x+2) - (x+2) = (2x - 1)(x+2)
\(2x^2+3x-2\)
\(=2x^2-x+4x-2\)
\(=\left(2x^2-x\right)+\left(4x-2\right)\)
\(=x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x+2\right)\)
2x2 + 3x - 2= 2x (x+2) - (x+2) = (2x - 1)(x+2)
\(2x^2+3x-2\)
\(=2x^2-x+4x-2\)
\(=\left(2x^2-x\right)+\left(4x-2\right)\)
\(=x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x+2\right)\)
a. 3x^2-3y^2-x-y
b. 2x^2+4xy-16+2y^2
c. -x^2-x+2
d. 3x^2-7x+4
e.-2x^2+3x-1
f. x^2+2xy+y^2-2x-2y
g.x^3-2x^2+1
h.4x^2-3x-1
k. 2x^2+5x+3
l. x^2-2x-y^2+1
j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3
k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8
m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
tìm X nhé
( 2x ^2-3x-1)^ 2 -3( 2x ^2-3x-5 ) -16 = 0
(2x+y)^2+(3x+y)(3x-y)-13x^2
Phân tích thành nhân tử :
1. \(2x^4+3x^3+2x^2+3x-3\)
2. \(3x^4-4x^3+6x^2-x-2\)
3. \(2x^4+x^3+6x^2-2x+3\)
4. \(3x^4-5x^3+x^2-2\)
5. \(x^4-5x^3+7x^2-6\)
Phan tich da thuc sau thanh nhan tu ( giup minh voi cac ban oi :<< )
1/ x3 + 2x + x2
2/ 2x3 + 4x2 + 2x
3/ -3x3 - 5x2 + 8x
4/ x2 + 4x - 5
5/ 6x2 - 3x - 3
6/ 3x2 - 2x -5
7/ 3x2 - 2x -5
8/ x2 - 2x - 4y2 - 4y
9/ x3 + 2x2y + xy2 - 9x
10/ x2 - y2 + 6x +9
c)3x^2-7x-10=0
d)2x(x-10)-x+10=0
e)3x^3+7x^2+17x+5=0
f)(2x-1)^2-(x-3)^2=0
g)x^3-5x^2+8x=4
Tìm A : biết
A : 3x^2=2x-1
A : 4x^2=3x+1
Rút gọn biểu thức:
_ (3x-2)2 + (3x+2)2 -2((3x-2)(3x+2)
_(x-5)(x+5)-(x-6)(x-4)
_(2x-1)2 + (3x+2)2 -2(3x-1)(3x+2)
Phân tích đa thức thành nhân tử
\(2x^4+3x^3-9x^2-3x+2 \)
\(x^4-3x^3-6x^2+3x+1\)
\(x^4-8x^2-x+12\)
\(x^4-x^3-10x^2+2x+4\)
\((x+2)^4+(x+8)^4-272\)
\((3-x)^4+(4x-x)^4-(7-2x)^4\)
\(2x^4-x^3y+3x^2y^2-xy^3+2x^4\)