( 2n + 5 ) ⋮ ( n + 1 ) <=> ( 2n + 2 ) + 3 ⋮ ( n + 1 ) <=> [ 2( n + 1 ) + 3 ] ⋮ ( n + 1 )
=> 3 ⋮ ( n + 1 ) => n + 1 thuộc ước của 3 => Ư(3) = { 1 ; 3 }
=> n + 1 = 1 => n = 0 ( tm )
=> n + 1 = 3 => n = 2 ( tm )
Vậy n = { 0 ; 2 }
Giải:
Ta có:
\(2n+5⋮n+1\)
\(\Rightarrow\left(2n+2\right)+3⋮n+1\)
\(\Rightarrow2\left(n+1\right)+3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1;3;-3\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
cj giai theo pp ngắn gọn nhé
2n + 5 - 2n - 2 = 3
n+1(ư)3 = -1;-3;1;3
n = -2; -4; 0;2
(2n+5)\(⋮\)(n+1)
2n+2+3\(⋮\)n+1
2(n+1)+3\(⋮\)n+1
Vì 2(n+1)\(⋮\)n+1
Buộc 3\(⋮\)n+1=>n+1ϵƯ(3)={1;3}
Với n+1=1=>n=0
n+1=3=>n+2
Vậy nϵ{0;2}