24.
Để pt xác định trên R \(\Leftrightarrow x^2+2x+m>0;\forall x\)
\(\Leftrightarrow\Delta'=1-m< 0\Rightarrow m>1\)
25.
Ko dịch được đề :D
24.
Để pt xác định trên R \(\Leftrightarrow x^2+2x+m>0;\forall x\)
\(\Leftrightarrow\Delta'=1-m< 0\Rightarrow m>1\)
25.
Ko dịch được đề :D
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
Tìm m để phương trình \(x^2-2x+2\left(x-\sqrt{2x+m}\right)\left(\sqrt{x}+1\right)-m=0\) có nghiệm duy nhất trên đoạn [0;3].
(chỉ cần gợi ý cách biến đổi ra pt bậc 2 là đc)
Tìm tập hợp các giá trị của m để hàm số y=√ ( m - 2)x^2 - 2( m- 3)x + m - 1 có tập xác định là R
xác định m để phương trình x^3-(2m+1)x^2+(m^2+m+1)x-m^2+m-1=0 có ba nghiệm dương phân biệt
Cho hàm số ✓x+m-2 + ✓2x -m =0. Tìm m để phương trình xác định với mọi x>1.
Cho phương trình: \(x^2+2x+\left|x+1\right|-m=0\)
giải phương trình khi m=1. Tìm m để phương trình vô nghiệm
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
Xác định m để với mọi m ta có
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\)