Đặt \(D=1+2+3+4+....+1996\)
Công thức tính tổng một dãy số cách đều 1 đơn vị là: \(\dfrac{n\cdot\left(n+1\right)}{2}\)
\(D=\dfrac{1996\cdot\left(1996+1\right)}{2}=1993006\)
Và\(\dfrac{1993006}{998}=1997\)
Ta có : \(\left[2\cdot3^{15}\cdot3^8-5\cdot3^2\cdot9^4\right]:1997-1817\)
=\(\left[2\cdot3^{23}-5\cdot3^2\cdot3^8\right]:1997-1817\)
=\(\left[2\cdot3^{23}-\left(2+3\right)\cdot3^{10}\right]:1997-1817\)
=\(\left(2\cdot3^{23}-2\cdot3^{10}-3\cdot3^{10}\right):1997-1817\)
=\(\left[2\cdot\left(3^{23}-3^{10}\right)-3^{11}\right]:1997-1817\)
= \(\text{94284457,59}-1817\)
( Kết quả phép tính trong ngoặc quá to nên mình ghi luôn kết quả thông cảm cho mình )
= \(\text{94282640},59\)
Kết quả bài này ra số thập phân quá cao là \(\text{94282640},59\)