\(PT\Leftrightarrow2022x^2+2022x-2021x-2021=0\)
\(\Leftrightarrow2022x\left(x+1\right)-2021\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2022x-2021\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2022x-2021=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{2021}{2022}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{2021}{2022}\right\}\)
\(2022x^2+x-2021=0\)
\(\Leftrightarrow2022x^2+2022x-2021x-2021=0\)
\(\Leftrightarrow2022x\left(x+1\right)-2021\left(x+1\right)=0\)
\(\Leftrightarrow\left(2022x-2021\right)\left(x+1\right)=0\Leftrightarrow x=\dfrac{2021}{2022};x=-1\)