1.rút gọn a.\(2\sqrt{20}+\sqrt{5}-2\sqrt{45}\)
b.tìm điều kiện xác định và rút gọn A=\(\left(\frac{\sqrt{x}-2}{\sqrt{x}+2}+\frac{8\sqrt{x}-3}{x-4}\right):\frac{1}{\sqrt{x}-2}\)
2 cho biết a=\(2+\sqrt{3}\)và b=\(2-\sqrt{3}\).tính giá trị biểu thức p=a+b-ab
7..tính\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b.tìm điều kiện xác định và rút gọn P=\(\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}-1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
1/ Tính:
a) \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
b) \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
2/ Rút Gọn: với a ≥ 0, a ≠ 1
B=\(\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
3/ Cho biểu thức: A = \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
a) Tìm điều kiện xác định của A
b) Rút gọn A
c) Tìm x để A < -1
Rút gọn và tìm điều kiện xác định:
\(\left(\dfrac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Cho biểu thức \(M=\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và \(a\ne b\) . Rút gọn M và tính giá trị biểu thức M biết \(\left(1-a\right).\left(1-b\right)+2\sqrt{ab}=1\)
giải phương trình: \(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Q= \(\frac{\sqrt{a}\left(1-a\right)^2}{1-a^2}:\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
a) Rút gọn biểu thức Q? b) Xét dấu of biểu thức P= a.(Q-\(\frac{1}{2}\))
\(P=\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}-\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{b}{\sqrt{b}-\sqrt{a}}\) với b > a > 0
a) Rút gọn P
b) Biết \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\) hãy tinha giá trị biểu thức P
Cho biểu thức A=\(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
Rút gọn A?
b, Tính A biết x=\(\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}+\sqrt{83-18\sqrt{2}}\)
1. cho biểu thức
M=\(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
a, tìm điều kiện xá định và rút gọn
b, tìm A để a>0
cho biểu thức: M=\(\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\)
1, rút gọn M
2, tính giá trị a; b biết khi \(\frac{a}{b}=\frac{1}{4}\) thì M=1
Bài 1: Cho biểu thức:
\(Q=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2-1+a}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\sqrt{a^2-2a+1}\left(0< a< 1\right)\)
a) Rút gọn Q
b) So sánh Q và Q3
Bài 2: Cho biểu thức:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\left(x\ge0;x\ne25\right)\)
a) Rút gọn P. Tìm các số thực để P > -2
b) Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên
Bài 3: Cho biêu thực:
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\left(0< x\ne1\right)\)
a) Rút gọn P
b) Tính giá trị của biểu thức P khi x = \(3-2\sqrt{x}\)
c) Chứng minh rằng với mọi giá trị của x để biểu thức P có nghĩa thì biểu thức \(\frac{7}{P}\) chỉ nhận một giá trị nguyên.