1) Tìm nghiệm của đa thức f(x)= \(2x^2-7x+3\)
2) Cho a,b,c thỏa mãn a/2015=b/2016=c/2017. Chứng tỏ: 4(a-b)(b-c)=(c-a)2
3) Tìm các số nguyên dương x,y,z thỏa mãn: 2x+2y+2z=2336, với x<y<z.
1) Tìm nghiệm của đa thức f(x)= 2x2\(2x^2-7x+3\)-7x+3
2) Cho a,b,c thỏa mãn a/2015=b/2016=c/2017. Chứng tỏ: 4(a-b)(b-c)=(c-a)2
3) Tìm các số nguyên dương x,y,z thỏa mãn: 2x+2y+2z=2336, với x<y<z.
Cho \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\).Chứng minh rằng : 4(a-b)(b-c)=(c-a)2
Cho 3 số a,b,c thỏa mãn : \(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}\)
Tính giá trị biểu thức : M = 4.( a-b ). ( b-c ). ( c-a )2.
Cho ba số a, b, c thỏa mãn : \(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}\)
Tính giá trị của biểu thức : M = 4.(a-b).(b-c)-(c-a)2
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
1.a) Tìm cặp số nguyên (x; y) thỏa mãn: |y+2015|+32=\(\frac{2016}{\left(2x-6\right)^2+63}\).
b) Cho các số thực dương a, b, c thỏa mãn \(b^2\)=ac. Chứng minh rằng: \(\frac{a}{c}\)=\(\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
Cho a,b,c thỏa mãn: \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}\). Chứng minh \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Cho a,b,c,d thỏa mãn: \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}\). Chứng minh \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)