1.
a, Để \(\dfrac{x+1}{x^2-2}\) có nghĩa \(\Leftrightarrow x^2-2\ne0\Leftrightarrow x^2\ne2\Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{2}\\x\ne-\sqrt{2}\end{matrix}\right.\)
b, Để \(\dfrac{x-1}{x^2+1}\)có nghĩa \(\Leftrightarrow x^2+1\ne0\Leftrightarrow x^2\ne-1\)
Vì \(x^2\ge0\forall x\in R\).
Vậy biểu thức trên luôn luôn có nghĩa.
c, Để \(\dfrac{ax+by+c}{xy-3y}cónghĩa\Leftrightarrow xy-3y=y\left(x-3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\).