Tính:\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...\)
Chứng minh rằng :
a) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
b) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
nếu các phép cộng trong tổng sau cứ kéo dài mãi \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+.......\)thì giá trị của tổng là bao nhiêu?
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
tính hợp lí ( nếu có thể )
\(B=\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right):\left(\frac{5}{12}+1-\frac{7}{11}\right)\)
\(C=\left(-\frac{14}{33}\right).2\frac{4}{9}+\frac{48}{25}:\frac{27}{25}\)
\(D=\left(3-2\frac{1}{3}+\frac{1}{4}\right):\left(4-5\frac{1}{6}+2\frac{1}{4}\right)\)
\(G=\left(7\frac{1}{9}-2\frac{14}{15}\right):\left(2\frac{2}{3}-6\frac{2}{3}\right)-\frac{32}{45}\)
\(H=-\frac{1}{7}.\left(9\frac{1}{2}-8,75\right):\frac{2}{7}+0,625:1\frac{2}{3}\)
Tính hợp lý:
a) \(4\frac{3}{4}+2,37+\frac{1}{8}+1,28+3,5+3\frac{1}{12}\)
b) \(\frac{\frac{1}{22}+\frac{3}{13}+\frac{1}{2}}{\frac{4}{13}-\frac{2}{11}+\frac{1}{2}}=\frac{11.13.2}{11.13.2}\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+..+16\right)\)
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
tính