Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
garate

nếu các phép cộng trong tổng sau cứ kéo dài mãi \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+.......\)thì giá trị của tổng là bao nhiêu?

Trần Thị Bảo Trân
25 tháng 9 2016 lúc 18:17

 

Giả sử \(ABC\text{D}\) là một hình vuông có cạnh là một đơn vị. Diện tích của hình vuông đó là:

1 x 1 = 1 ( đơn vị diện tích )

S1 S2 S3 S4 S5 S6 A B D C 1 đơn vị

Hình chữ nhật \(S_1\) bằng một nữa hình vuông \(ABC\text{D}\) nên diện tích: \(S_1\)\(=\frac{1}{2}\)

Chia đôi phần còn lại của hình vuông \(ABC\text{D}\) ta được hình vuông \(S_2\) bằng \(\frac{1}{4}\) hình vuông \(ABC\text{D}\) nên diện tích \(S_2\)\(=\frac{1}{4}\)

Tiếp tục chia đôi phần còn lại của hình vuông \(ABC\text{D}\) ta được hình chữ nhật \(S_3\) có diện tích \(S_3\)\(=\frac{1}{8}\)

Cứ tiếp tục làm như vậy ta có các diện tích:

\(S_4\)\(=\frac{1}{16}\)\(S_5\)\(=\frac{1}{32}\)\(S_6\)\(=\frac{1}{64}\), v.v.......

Vậy: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+......\)

\(=S_1\)\(+\)\(S_2\)\(+\)\(S_3\)\(+\)\(S_4\)\(+\)\(S_5\)\(+\)\(S_6\)\(+.......\)

Nhìn vào hình vẽ ta thấy nếu ta càng kéo dài tổng các diện tích nói trên bao nhiêu thì tổng ấy càng tiến dần đến diện tích hình vuông \(ABC\text{D}\) bấy nhiêu.

Vậy nếu ta kéo dài mãi mãi tổng các diện tích nói trên thì sẽ được chính diện tích hình vuông \(ABC\text{D}\). Suy ra:

\(S_1\)\(+\)\(S_2\)\(+\)\(S_3\)\(+\)\(S_4\)\(+.......=S_{ABC\text{D}}\)

Hay \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+.....=1\)(*)

garate
25 tháng 9 2016 lúc 17:49

Help me!


Các câu hỏi tương tự
Đặng Hoàng Ngọc
Xem chi tiết
Đặng Hoàng Ngọc
Xem chi tiết
Lê Bảo Ngọc
Xem chi tiết
Dark Wings
Xem chi tiết
Trần Quang Hiếu
Xem chi tiết
Nguyễn Thị Lệ Hoa
Xem chi tiết
Lại Gia Hân
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
agelina jolie
Xem chi tiết