Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(A=\dfrac{50}{100}-\dfrac{1}{100}\)
\(A=\dfrac{49}{100}\)
Đặt :
A=1\2−1\3+1\3−1\4+1\4−1\5+..............+1\99−1\100
A=49\100
A=12.3+13.4+14.5+...+199.100
A=12−13+13−14+14−15+...+199−1100
A=12−(13−13)−(14−14)−(15−15)−...−(199−199)−1100
A=12−0−0−0−...−0−1100
A=12−1100
A=50100−1100
A=49100